
Published in Image Processing On Line on 2016–07–10.
Submitted on 2015–12–14, accepted on 2016–04–15.
ISSN 2105–1232 c© 2016 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2016.158

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

A C++ Implementation of Otsu’s Image Segmentation

Method

Juan Pablo Balarini, Sergio Nesmachnow

Facultad de Ingenieŕıa, Universidad de la República, Uruguay
{jpbalarini,sergion}@fing.edu.uy

Abstract

This article presents an implementation of Otsu’s segmentation method and a case study using
multiple images. Otsu’s method performs nonparametric and unsupervised image thresholding,
usually used on image segmentation. The algorithm finds an optimal threshold of an image by
minimizing the within-class variance, using only the gray-level histogram of the image. The
proposed implementation is conceived emphasizing the role of mathematics as a source for
algorithm design and the reproducibility of the research, according to the Image Processing On
Line (IPOL) philosophy.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation should be performed using the provided makefile. The provided
code enables running the algorithm using automatic threshold selection, or overriding this for
manual thresholding.

Keywords: thresholding; segmentation; Otsu’s method

1 Introduction

In the last twenty years, digital image processing has become of special interest in science and
technology. The importance of analyzing data from images is very relevant in both critical systems
and everyday applications, including satellite systems, automated medical analysis, text and face
recognition, military and defense systems, and others. Image processing describes the process by
which the information from an input image or a set of them (usually represented as bi-dimensional
systems) are used (i.e. processed) to produce an output image or a set of output data, which is
related with the input images [4, 8].

Image segmentation consists on separating an image into regions or contours, that generally
correspond to boundaries or objects on images. Usually, segmentation is made by identifying common

1http://dx.doi.org/10.5201/ipol.2016.158

Juan Pablo Balarini, Sergio Nesmachnow, A C++ Implementation of Otsu’s Image Segmentation Method, Image Processing On Line, 6
(2016), pp. 155–164. http://dx.doi.org/10.5201/ipol.2016.158

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2016.158
http://dx.doi.org/10.5201/ipol.2016.158
http://dx.doi.org/10.5201/ipol.2016.158
http://dx.doi.org/10.5201/ipol.2016.158


Juan Pablo Balarini, Sergio Nesmachnow

properties or finding differences between regions. This implies that pixels are grouped into regions
or classes that share some common property (such as color, intensity, etc.).

Otsu’s segmentation method (named after Nobuyuki Otsu) is a global image thresholding algo-
rithm usually used for thresholding, binarization and segmentation [7, 6, 9]. It works mainly with
the image histogram, looking at the pixel values and the regions that the user wants to segment out,
rather than looking at the edges of an image. It tries to segment the image making the variance on
each of the classes minimal. The algorithm works well for images that contain two classes of pixels,
following a bi-modal histogram distribution.

Finding an open-source implementation that was peer-reviewed and verified for this algorithm can
be difficult, therefore a working C++ implementation is presented that correctly segments the image
using Otsu’s method. The main contributions of this article are: i) a functional implementation
of Otsu’s thresholding algorithm for segmentation for IPOL and ii) a case study presenting the
application of the implemented method on a group of test images. The article is organized as
follows. Section 2 introduces image segmentation and describes Otsu’s algorithm. The proposed
implementation for Otsu’s algorithm is described in Section 3. Section 4 presents a study of the
application of the proposed method to a set of images. Finally, Section 5 summarizes the conclusions
and formulates the main lines for future work.

2 Image Segmentation and Otsu’s Algorithm

This section briefly describes image segmentation techniques, introduces Otsu’s algorithm, and re-
views some relevant related works about existing implementations of Otsu’s algorithm.

2.1 Image Segmentation

Image segmentation is an umbrella term that includes a set of techniques for image processing based
on applying a dividing strategy (i.e. a single image is divided in multiple parts) [3]. After the divid-
ing process, each one of the image components is used for a specific purpose, for example, to identify
objects or other relevant information. Several methods are used for image segmentation: threshold-
ing, color-based, texture filters, clustering, among others. An effective approach to performing image
segmentation includes using existing algorithms and tools, and integrating specific components for
data analysis, image visualization, and the development and implementation of specific algorithms.

One of the most popular approaches for image segmentation is through thresholding. Thresholding
takes a gray-scale image and replaces each pixel with a black one if its intensity is less than some
fixed constant, or a white pixel if the intensity is greater than that constant. The new binary image
produced separates dark from bright regions. Mainly because finding pixels that share intensity in
a region is not computationally expensive, thresholding is a simple and efficient method for image
segmentation.

Formally, a function g(x, y) can be defined over every pixel value of the original image f(x, y)
that defines the new thresholded image.

g(x, y) =

{
1, f(x, y) ≥ T
0, x < T

. (1)

Equation (1) defines that for every pixel on the original image, a new value of 0 or 1 will be assigned
to the new image, depending if the current pixel value is greater than some defined threshold T .

Several approaches have been proposed to define thresholding methods. According to the cate-
gorization by Sezgin and Sankur [9], six strategies are identified:

• Histogram shape methods, which use information from the image histogram;

156



A C++ Implementation of Otsu’s Image Segmentation Method

• Clustering methods, which groups objects in classes, e.g. background and foreground;

• Entropy methods, which make use of entropy information for foreground and background, or
cross-entropy between the original and the binary image;

• Object attribute methods, which evaluate and use the similarities between the original and the
binary images;

• Spatial methods, which apply higher-order probability distribution and/or correlation between
pixels;

• Local methods, based on adapting the threshold value to locally defined characteristics.

The algorithm studied in this article (Otsu’s algorithm) is a clustering-based method, which is
described next.

2.2 Otsu’s Algorithm

Otsu’s algorithm is a simple and popular thresholding method for image segmentation, which falls
into the clustering category.

The algorithm divides the image histogram into two classes, by using a threshold such as the
in-class variability is very small. This way, each class will be as compact as possible. The spatial
relationship between pixels is not taken into account, so regions that have similar pixel values but
are in completely different locations in the image will be merged when computing the histogram,
meaning that Otsu’s algorithm treats them as the same.

Assuming that pixels are categorized in two classes, the algorithm tries to minimize the weighted
within-class variance σ2

w(t), defined by the expression in Equation (2). The variable t is the threshold,
which is typically a value between 0 and 255.

σ2
w(t) = q1(t)σ

2
1(t) + q2(t)σ

2
2(t). (2)

The process for computing σ2
w(t) is described next. A probability function P is obtained for every

pixel value. First, the histogram distribution for the image is computed, and then a normalization
is performed in order to guarantee it follows a probability distribution. After that, the pixel values
are divided into two classes C1 and C2 by a threshold t, using the class probability functions q1(t)
and q2(t), defined in equations (3) and (4).

q1(t) =
t∑

i=1

P (i), (3) q2(t) =
I∑

i=t+1

P (i). (4)

Class C1 represents those pixels with intensity levels in [1, t], and class C2 represents those pixels
with levels in the interval [t+ 1, I], where I is the largest pixel value (typically 255).

Then, the means for class C1, µ1(t), and class C2, µ2(t) are obtained:

µ1(t) =
t∑

i=1

iP (i)

q1(t)
, (5) µ2(t) =

I∑
i=t+1

iP (i)

q2(t)
. (6)

After that, the variances for class C1, σ
2
1(t), and class C2, σ

2
2(t) are computed

σ2
1(t) =

t∑
i=1

[i− µ1(t)]
2P (i)

q1(t)
, (7)

157



Juan Pablo Balarini, Sergio Nesmachnow

σ2
2(t) =

I∑
i=t+1

[i− µ2(t)]
2P (i)

q2(t)
. (8)

Equation (7) and Equation (8) define the weighted within-class variance for C1 and C2, respec-
tively. These are the values that Otsu’s algorithm tries to minimize. This variance is a measure of
“how compact” each class is, meaning that if the method chooses a bad threshold, the variance for
one of the classes will be large.

Using equations (2), (7) and (8), the total variance can be defined by Equation (9), as the sum
of the within class and the between-class variance. The value σ2 is constant, as it does not depend
on the threshold (the variance of an image is always a constant value), meaning that the algorithm
must focus on minimizing σ2

w(t), or maximizing σ2
b (t).

σ2 = σ2
w(t) + σ2

b (t), where σ2
b (t) = q1(t)q2(t)[µ1(t)− µ2(t)]

2. (9)

To better illustrate how the algorithm works, a brief example is presented next.
Figure 1a shows an image of the Ceres dwarf planet and Figure 1b presents the corresponding

histogram for the image. From Figure 1b, the histogram clearly follows a bi-modal distribution, as the
pixel gray-levels are distributed over two classes or modes of the histogram: one class corresponding
to the dwarf planet itself and the other to the background (space). By taking advantage of this pixel
distribution, Otsu’s algorithm is able to find an appropriate threshold value, and the segmented
output image is very sharp, as seen in Figure 1c. It is worth noting that images with a lot of
noise will have an almost-uniform histogram distribution, meaning that the algorithm might not
be able to find a proper threshold to segment. However, in those cases dealing with noisy images,
the application of Otsu’s algorithm can be preceded by a noise reduction [1, 5] and/or filtering
algorithm, which allows transforming a flat (uniform) histogram into a one where two classes are
clearly distinguishable.

(a) Ceres (b) Ceres histogram (c) Segmented Ceres

Figure 1: Ceres

A concrete implementation of Otsu’s algorithm defines a procedure to automatically determine
an appropriate value for the threshold, as it is described in the next section.

2.3 Related Work: Implementations of Otsu’s Algorithm

On his seminal article “A threshold selection method from gray-level histograms”, published in
1979, Nobuyuki Otsu only presented the theoretical background and the main ideas behind the
segmentation algorithm. No implementation was provided then.

158



A C++ Implementation of Otsu’s Image Segmentation Method

Nowadays, there are some implementations of Otsu’s algorithm reported on the Internet. But
some of them lack documentation, others do not specify usage rights and others were not peer-
reviewed or verified. Only some of them explain the theoretical background behind the algorithm
and how it actually works.

The implementation by Birdal2, is available on the Code Project repository. Birdal developed an
implementation of Otsu’s algorithm using the C# language and presents a Graphical User Interface
(GUI) for easy thresholding: it allows loading the input images, using Otsu’s method to find the
threshold, and finally saving the thresholded image to an output file.

Another implementation is presented on The Lab Book Pages3. This proposal introduces Otsu’s
thresholding method and provides a Java implementation of the algorithm. The implementation
provides a method for obtaining the actual threshold for an input image and the thresholded output
image. Also, an example code is presented, in which the provided method is used to open an input
image, generate its histogram, segment the image using Otsu’s method, and finally save the image.

The Walrus Vision Framework page presents a generic description of Otsu’s algorithm, and pro-
vides a Java snippet4. This snippet only provides a basic idea on how the algorithm works but no
explanation about how to use the tool is provided (details such as input image type, etc. are not
commented). In addition, no code is provided to open and process input images, or to threshold and
save the output image.

Diggins [2] presented an implementation of Otsu’s thresholding method for the ARlib augmented
reality toolkit. This implementation does not provide a method for opening the input image or saving
the segmented image result. Another drawback of this implementation is that when contrasting the
obtained threshold for an input image with the graythresh Matlab function, which provides a
method to compute the Otsu’s threshold, the two values differ.

3 The Proposed Implementation for Otsu’s Algorithm in

C++

This section describes the proposed C++ implementation for Otsu’s algorithm and presents a brief
analysis of the computational complexity of the method.

3.1 Implementation

The proposed implementation for Otsu’s algorithm is based on the formulation presented in the
previous section, applying an iterative method to compute and maximize the between-class variance,
defined by Equation (9).

A straightforward approach for maximization is to explore all possible values, by iterating from
the lowest value of t (typically 0) to the highest t (typically 255), computing q1(t)q2(t)[µ1(t)−µ2(t)]

2.
The highest value computed is returned. The proposed implementation, described in the pseudocode
in Algorithm 1, applies this idea.

The proposed algorithm was implemented in C++. The Image Processing Framework by Miguel

2Famous Otsu thresholding in C#, T. Birdal, 2009. http://www.codeproject.com/Articles/38319/

FamousOtsu-Thresholding-in-C [Online; accessed 2-September-2015]
3Otsu thresholding, A. Greensted, 2010. http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.

html [Online; accessed 2-September-2015]
4How Otsu thresholder algorithm works, Walrus vision, 2014. http://www.walrusvision.com/wordpress/

otsu-thresholder-algorithm-works/ [Online; accessed 2-September-2015]

159

http://www.codeproject.com/Articles/38319/FamousOtsu-Thresholding-in-C
http://www.codeproject.com/Articles/38319/FamousOtsu-Thresholding-in-C
http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
http://www.walrusvision.com/wordpress/otsu-thresholder-algorithm-works/
http://www.walrusvision.com/wordpress/otsu-thresholder-algorithm-works/


Juan Pablo Balarini, Sergio Nesmachnow

Algorithm 1: Thresholding segmentation using Otsu’s method or manual input

input : input image (grayscale), overridden threshold
output: output image

1 read(input image)
2 N = input image.width × input imnumberage.height

initialize variables

3 threshold, var max, sum, sumB, q1, q2, µ1, µ2 = 0
4 max intensity = 255
5 for i=0; i <= max intensity; i++ do
6 histogram[value] = 0

accept only grayscale images

7 if num channels(input image) > 1 then
8 return error

compute the image histogram

9 for i=0; i<N; i++ do
10 value = input image[i]
11 histogram[value] += 1

12 if manual threshold was entered then
13 threshold = overridden threshold
14 else

auxiliary value for computing µ2
15 for i=0; i<=max intensity; i++ do
16 sum += i × histogram[i]

update qi(t)

17 for t=0; t<=max intensity; t++ do
18 q1 += histogram[t]
19 if q1 == 0 then
20 continue

21 q2 = N− q1

update µi(t)

22 sumB += t × histogram[t]
23 µ1 = sumB/q1

24 µ2 = (sum - sumB)/q2

update the between-class variance

25 σ2
b (t) = q1(t)q2(t)[µ1(t)− µ2(t)]

2

update the threshold

26 if σ2
b (t) > var max then

27 threshold = t
28 var max = σ2

b (t)

build the segmented image

29 for i=0; i < N; i++ do
30 if input image[i] > threshold then
31 output image[i] = 1
32 else
33 output image[i] = 0

34 return output image

160



A C++ Implementation of Otsu’s Image Segmentation Method

Colom5 is used to read the input images. The framework helps opening PNG and JPEG images and
it allows working with the image as an unidimensional vector (one vector for each color channel).
The length of each vector is M × N , where M is the number of rows of the image and N is the
number of columns of the image respectively; this is of special interest when accessing every pixel
on the image and when computing the image histogram. This framework is also useful to validate
the algorithm input parameters and options, using the capabilities of returning proper errors when
input parameters or options are missing or misspelled.

Because Otsu’s algorithm works with grayscale images, the algorithm assumes that the input
image has one color channel; in case this requirement is not met, an error is returned. The first
loop (lines 9-11 in Algorithm 1) iterates over every pixel, accumulating the counters for every gray-
level pixel, in order to compute the image histogram. After that, the obtained histogram is used to
compute Otsu’s threshold value, by updating qi(t) and µi(t) (lines 15-24), which are used to obtain
σ2
b (t) (line 25). Once the threshold value is found for the input image, a new output image is created,

which applies a thresholding segmentation over the input image using the computed threshold value
(lines 29-33). The new image, which correspond to the segmented version of the input image, is then
returned (line 34). The algorithm allows overriding the threshold value (manual threshold), in order
to see what the output would be if another threshold value is selected. The main advantage of the
proposed work is that a functional Open-Source implementation is presented that contributes to the
main lines of work of the IPOL project. Since it was implemented in C++ and was developed with
efficiency in mind, it allows working with large images and obtaining faster thresholding times that
when contrasted with more heavyweight implementations (i.e. Java, C#, etc.).

3.2 Computational Complexity

Regarding the computational complexity of the proposed implementation, the number of operations
is given by the four loops in the code:

1. The first loop (lines 5–6) in Algorithm 1 corresponds to the histogram initialization, requiring
O(max intensity + 1) operations;

2. the second loop (lines 9–11) is performed to compute the histogram for the input image, it
requires O(N) operations, being N the product of the width and the height of the input image;

3. the third loop (lines 15–28) is used to compute the values of the weighted within-class variance
σ2
b (t), it has a complexity of O(max intensity + 1) operations; and finally,

4. the fourth loop, to define the output image (lines 29–33), requires O(N) operations.

Thus, the whole C++ implementation for Otsu’s algorithm involves O(max intensity + N) op-
erations, i.e. it is linear on the number of pixels in the input image.

4 Case Study

This section presents a case study demonstrating the application of the proposed implementation on
a group of standard images used in image processing benchmarks. The problem instances consist on
a set of 4 images with PNG format, 1 color channel (8 bits) and different sizes ranging from 256×256
pixels to 1024× 765.

5Image processing framework, M. Colom, 2015. https://github.com/mcolom/image_processing_framework

[Online; accessed 30-July-2015]

161

https://github.com/mcolom/image_processing_framework


Juan Pablo Balarini, Sergio Nesmachnow

Figures 2a, 3a, 4a, and 5a show four input examples that have different histogram distributions.
Regarding the first image (Fingerprint, in Figure 2a), the histogram in Figure 2b indicates that it

does follow a bi-modal distribution, which means that the image pixels are distributed over two classes
of the histogram. One class corresponds to the fingerprint itself and the other to the background.

The second image, in Figure 3a, shows a picture that has a clear distinction between the promi-
nent elements on the image (the houses) and the background (the sky). This situation is clearly
summarized in the image histogram in Figure 3b. Nonetheless, the segmented result (shown in Fig-
ure 3c) demonstrates that Otsu’s algorithm is not able to separate properly the different parts of
each house, mainly because they cover a large range of grayscale values (between 0 and T ), which
are widely distributed over the image histogram. All these values fall inside the “0” category when
performing the image thresholding.

The third image, in Figure 4b, shows a distinction between the cameraman (with the camera
equipment) and the background, and this information is clearly shown in the image histogram (in
Figure 4b). In this case, pixels that correspond to the cameraman are distributed over the left part
of the histogram (i.e. lower values of intensity) and there is a clear separation between those pixels
and the rest of pixels of the image. Otsu’s algorithm is able to find an appropriate threshold value,
and it does a good job segmenting the cameraman with the camera from the image background.

The fourth image, Figure 5a, shows a clear distinction between the balls and the background, as
shown in the image histogram (Figure 5b). In this example, pixels that correspond to the balls are
distributed over the right part of the histogram (i.e. higher values of intensity) while the background
is distributed over the lower left part of the histogram (i.e. lower values of intensity) meaning that
Otsu’s algorithm is able to perfectly segment the balls from the background as seen on Figure 5c.

From the presented examples it can be seen that the quality of the segmented output image
depends highly on the image following a bi-modal histogram distribution or not. This is because
Otsu’s algorithm tries to separate image pixels into two distinct classes; if the image has more than
two classes, the algorithm is not able to find a threshold that separates them.

(a) Input image (b) Image histogram (c) Segmented image

Figure 2: Fingerprint

5 Conclusions

The main motivation behind Otsu’s image thresholding algorithm is trying to find a threshold that
separates the image histogram into two classes. For this reason, it is considered an image seg-
mentation method. This article presents a functional implementation of Otsu’s threshold selection
algorithm, that it is used to segment an input image. A well commented implementation, along with
a complete analysis of the algorithm is provided. A case study for the application of the proposed

162



A C++ Implementation of Otsu’s Image Segmentation Method

(a) Input image (b) Image histogram (c) Segmented image

Figure 3: Houses

(a) Input image (b) Image histogram (c) Segmented image

Figure 4: Cameraman

(a) Input image (b) Image histogram (c) Segmented image

Figure 5: Balls

implementation is also presented. For the case study, multiple images are used as the algorithm input
to better understand how the image histogram distributions affects the quality of the segmented out-
put image. The obtained results indicate that the quality of the segmented image depends highly on
the image following a bi-dimensional histogram distribution or not. Another important contribution
of the article is an Open-Source implementation, following the criteria of reproducible research. The
code is publicly available also at GitHub6. The official code is the code at IPOL, which was submitted
to a peer-review process; the code at GitHub is not official, but might contain useful updates.

6 Otsu’s Segmentation Method, https://github.com/jpbalarini/otsus (05 December 2015)

163

https://github.com/jpbalarini/otsus


Juan Pablo Balarini, Sergio Nesmachnow

Image Credits

Ceres Dwarf Planet (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA), Public Domain7

Glenn J. Mason (Flickr), CC-BY-SA8

Houses (Wikipedia), CC-BY-SA9

Cameraman standard test image10

Standard test image11

References

[1] A. Buades, B. Coll, and J-M. Morel, On image denoising methods, tech. report, CMLA
(Centre de Mathematiques et de Leurs Applications, 2004.

[2] D. Diggins, ARLib: A C++ Augmented Reality Software Development Kit, master’s the-
sis, MSc Computer Animation, N.C.C.A Bournemouth University, 2005. https://nccastaff.

bournemouth.ac.uk/jmacey/MastersProjects/Msc05/ddiggins_msc_thesis.pdf.

[3] R.C. Gonzalez and R.E. Woods, Digital image processing (3rd edition), Prentice-Hall, Inc.,
2006. ISBN 013168728X.

[4] A.K. Jain, Fundamentals of digital image processing, Prentice-Hall, Inc., 1989. ISBN 0-13-
336165-9.

[5] C. Liu, W. T. Freeman, R. Szeliski, and S.B. Kang, Noise estimation from a single
image, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 1, 2006, pp. 901–908. http://dx.doi.org/10.1109/CVPR.2006.207.

[6] S. Malakar, D. Mohanta, R. Sarkar, N. Das, M. Nasipuri, and Basu D.K., Bi-
narization of the Noisy Document Images: A New Approach, Springer Berlin Heidelberg, 2011,
pp. 511–520. http://dx.doi.org/10.1007/978-3-642-22786-8_64.

[7] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Sys-
tems, Man and Cybernetics, 9 (1979), pp. 62–66. http://dx.doi.org/10.1109/TSMC.1979.

4310076.

[8] J.C. Russ, Image processing handbook (4rd edition), CRC Press, Inc., 2002. ISBN 084931142X.

[9] M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative per-
formance evaluation, Journal of Electronic Imaging, 13 (2004), pp. 146–168. http://dx.doi.

org/10.1117/1.1631315.

7http://photojournal.jpl.nasa.gov/jpeg/PIA19562.jpg
8http://www.flickr.com/photos/glennji/3558118429/
9https://commons.wikimedia.org/wiki/File:Image_processing_pre_otsus_algorithm.jpg

10http://graphics.cs.williams.edu/data/images/cameraman.png
11http://www.fing.edu.uy/~sergion/balls.png

164

https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/Msc05/ddiggins_msc_thesis.pdf
https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/Msc05/ddiggins_msc_thesis.pdf
http://dx.doi.org/10.1109/CVPR.2006.207
http://dx.doi.org/10.1007/978-3-642-22786-8_64
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1117/1.1631315
http://dx.doi.org/10.1117/1.1631315
http://photojournal.jpl.nasa.gov/jpeg/PIA19562.jpg
http://www.flickr.com/photos/glennji/3558118429/
https://commons.wikimedia.org/wiki/File:Image_processing_pre_otsus_algorithm.jpg
http://graphics.cs.williams.edu/data/images/cameraman.png
http://www.fing.edu.uy/~sergion/balls.png

	Introduction
	Image Segmentation and Otsu's Algorithm
	Image Segmentation
	Otsu's Algorithm
	Related Work: Implementations of Otsu's Algorithm

	The Proposed Implementation for Otsu's Algorithm in C++
	Implementation
	Computational Complexity

	Case Study
	Conclusions

